The Pathophysiology of Traumatic Brain Injury (TBI): A Review

Main Article Content

Sujan Narayan Agrawal


Traumatic brain injury (TBI) is an insult to the brain from an external mechanical force. It may cause permanent or temporary impairment of cognitive, physical, and/or psychological functions. It may also be associated with an altered or diminished state of consciousness. It accounts for approximately 40% of all deaths from acute injuries. The economic burden due to loss of earning capacity is tremendous. It affects all age groups, but the main victims are the adults in the prime of their life. The major cause of TBI is road traffic accidents. The primary injury, sustained at the time of the accident, cannot be altered. The main aim of TBI management is to prevent or limit the secondary brain injury which develops after Primary injury. The proper recognition of trauma and secondary pathology goes a long way to limit mortality and morbidity. The skull fractures, intracranial bleeds can be surgically treated. Early recognition of cerebral edema, raised intracranial tension, hydrocephalus and brain herniation is the essential part of neurosurgical management.

Traumatic Brain Injury (TBI), Glasgow Coma Scale (GCS), extradural hematoma, subdural hematoma, coup/contrecoup injury, brain herniation.

Article Details

How to Cite
Agrawal, S. N. (2021). The Pathophysiology of Traumatic Brain Injury (TBI): A Review. Asian Journal of Research and Reports in Neurology, 4(1), 1-10. Retrieved from
Review Article


Parikh S, Koch M, Narayan RK. Traumatic brain injury. International Anesthesiology Clinics. 2007;45(3):119–35.
DOI: 10.1097/AIA.

Pearn ML, Niesman IR, Egawa J. Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell Mol Neurobiol. 2017;37:571–585.

Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6(7):393–403.
DOI: 10.1038/nrneurol. 2010.74

Samabasivan M. Epidemiology of Neurotrauma. Neurology and Prevention. Neurol India (Supl). 1991;43:9–15. [Google Scholar]

Ramamurthi B. Road accidents, Epidemiology, and Prevention. Neurol India (Supl). 1991;43:9–15. [Google Scholar].

Gururaj G. Epidemiology of traumatic brain injuries: Indian scenario. Neurol Res. 2002;24:24–8. [PubMed] [Google Scholar].

Agrawal SN. The Glasgow Coma Scale: A Breakthrough in the Assessment of the Level of Consciousness. J Tradit Med Clin Natur. 2018;7:273.
DOI: 10.4172/2573-4555.1000273

Teasdale GM, Jennett B. Assessment of coma and impaired consciousness: A practical scale. Lancet. 1974;2:81-84.

Sujan Narayan Agrawal. “Glasgow coma scale" what is new. IJMRCR. 2019;3(6).
[ISSN: 2534-9821]

Chandra Shekhar, Laxmi Narayan Gupta, Ishwar Chandra Premsagar, Madhu Sinha, Jugal Kishore. An epidemiological study of traumatic brain injury cases in a trauma center of New Delhi (India). J Emerg Trauma Shock. 2015;8(3):131-139
DOI: 10.4103/0974-2700.160700

Steyerberg EW, Mushkudiani N, Perel P. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 2008;5(8):165. [Medline].

Niedzwiecki CM, Marwitz JH, Ketchum JM. Traumatic brain injury: A comparison of inpatient functional outcomes between children and adults. J Head Trauma Rehabil. 2008;23(4):209-19. [Medline].

Hawryluk GWJ, Manley GT. Classification of traumatic brain injury: Past, present, and future. In: Grafman J, Salazar AM, editors. Handbook of Clinical Neurology. Traumatic Brain Injury, Part I. Waltham, USA: Elsevier B.V. 2015;127(3):15-21.

Werner C, Engelhard K. Pathophysiology of traumatic brain injury. British Journal of Anaesthesia. 2007;99(1):4-9.
DOI: 10.1093/BJA/aem131

Sriram Bhat M. editors. In: SRB Manual of Surgery.4rth ed. Jaypee brothers' medical publishers(P) Ltd. New Delhi. 2013;1173-1180

Graham DI, Gennarelli TA, McIntosh TK. Trauma. In: Graham DI, Lantos PL, editors. Greenfield's Neuropathology. Arnold; London. 2002;823–898. [Google Scholar] Fracture skull bone.
Available: accessed on 21.11.2020.

Bayly PV, Cohen TS, Leister EP, Ajo D, Leuthardt EC, GM: Deformation of the human brain induced by mild acceleration. Journal of Neurotrauma. 2005;22(8):845-856.

Feng Y, Abney TM, Okamoto RJ, Pless RB, Genin GM, Bayly PV et al. Relative brain displacement and deformation during constrained mild frontal head impact. Journal of the Royal Society Interface. 2010;7:1677-1688.
DOI: 10.1098/rsif.2010.0210

Serge Marbacher, Ottavio Tomasi, Javier Fandino. Management of patients presenting with acute subdural hematoma due to ruptured intracranial aneurysm. International Journal of Vascular Medicine. 2012;19.
DOI: accessed on 21.11.2020

Ommaya AK, Grubb RL Jr, Naumann RA. Coup and contre-coup injury: Observations on the mechanics of visible brain injuries in the rhesus monkey. J Neurosurg. 1971; 35(5):503-16. [Medline].

Drew LB, Drew WE. The contrecoup-coup phenomenon: a new understanding of the mechanism of closed head injury. Neurocrit Care. 2004;1(3):385-90. [PubMed]

Goggio AF. The mechanism of contre-coup injury. J Neurol Psychiatry. 1941;4(1):11-22. [PMC free article] [PubMed].

Zink BJ. Secondary brain injury is mediated through the following neurochemical mediators, Traumatic brain injury. Emerg Med Clin North Am. 1996;14(1):115-50 [Medline].

Hari Hara Dash, Siddharth Chavali. Management of traumatic brain injury patients. Korean J Anesthesiol. 2018; 71(1):12-21

Parmeet Kaur, Saurabh Sharma. Recent Advances in Pathophysiology of Traumatic Brain Injury. Curr Neuropharmacol. 2018; 16(8):1224–1238.
[PMCID: PMC6142406 PMID: 29683100]

Osteen CL, Moore AH, Prins ML, Hovda DA. Age-dependency of 45 calcium accumulation following lateral fluid percussion: acute and delayed patterns. J. Neurotrauma. 2001;18:141-162.

Xiong Y, Gu Q, Peterson PL, Muizelaar JP. Lee CP. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J. Neurotrauma. 1997;14:23-34.

Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann. N. Y. Acad. Sci. 2010; 1201:183-188.

Hovda DA, Villablanca JR, Chugani HT, Phelps ME. Cerebral metabolism following neonatal or adult hemineodec ortication in cats: I. Effects on glucose metabolism using [14C]2-deoxy-D-glucose autoradio-graphy. J. Cereb. Blood Flow Metab. 1996;16:134-146.

Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech. 2013;6(6):1307-1315.

Golding EM, Robertson CS, Bryan RM. The consequences of traumatic brain injury on cerebral blood flow and autoregulation: A Review. Clin. Exp. Hyperten. (New York, N.Y.: 1993). 1999;21:299-332.

Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech. 2013;6(6):1307-1315.

Vergun O, Keelan J, Khodorov BI, Duchen MR. Glutamate-induced mitochondrial depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurones. J. Physiol. 1999;519:451-466.

Mokri B. The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001;56(12):1746-8. [PubMed].

Munakomi S, M Das J. Brain Herniation. [Updated 2020 Nov 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020.
Available: Brain herniation
Available: accessed on 21.11.2020.